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Anomalous diffusion, generated by intermittent systems, is investigated from the point of view of a
bivariate thermodynamic formalism. We show that the phenomenon is related to the occurrence of
phase transitions. Detailed numerical calculations are performed.
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I. INTRODUCTION

The scaling behavior [1-12] of dynamical systems is
characterized by several invariants which are to some ex-
tent mutually independent. In addition, fluctuation prop-
erties provide a refined description of the scaling
behavior. Dynamical systems often have the property of
being nonhyperbolic. This then leads to the occurrence
of the well-known phenomenon of phase transitions
[7,12] in their flucutation spectra. In the case of map-
pings on a grid of unit cells, nonhyperbolicity may also
give rise to the phenomenon of anomalous diffusion. It is
one aim of this paper to elucidate the relation between
the two phenomena described above. For diffusion
[13-22], the characteristic quantity to be investigated is
the mean-squared displacement r as a function of the
time ¢ (or of the number of iterations n in the discrete
case). In most cases it is found to scale as (r%(z)) ~t°.
Characteristic of Brownian motion is an exponent a=1,
in which case the diffusional behavior is called regular or
linear. Then the diffusion can be described by
(r*(t)) =Dt, where D is the diffusion coefficient. Howev-
er, a71 is frequently found in experiments. The sub-
linear diffusion a <1 has been found, e.g., for motion on
fractal structures [15]. Superlinear diffusion a>1 has
been observed primarily in Hamiltonian systems. It has
been shown that Lévy walks [19] are an appropriate ap-
proach for the description of this effect.

Instead of following the common probabilistic ap-
proach, we will exploit the thermodynamic formulation
of the problem. This description of a dynamical system
uses as a starting point a suitable generating partition of
the phase space. Then the partition function [1] is used
to calculate the thermodynamic averages. From the par-
tition function, the generalized free energy and the asso-
ciated entropy can be evaluated. From either of these
functions, all relevant information on the invariants of
the system, such as the spectrum of fractal dimensions
f(a) [1], and of Lyapunov exponents ¢(A) [or g(y)], is
available [5,11,12]. As usual, points of nonanalytical
behavior of these functions are interpreted as phase tran-
sitions. Generically, a first-order phase transition ap-
pears if there is an element of the partition which shows a
power-law dependence upon iteration. An analogous sit-
uation holds for anomalous diffusion. Once the diffusion
properties can be included in the partition function,
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nonanalytical dependence of the thermodynamic function
on the associated weighting exponent can be related to
the occurrence of anomalous diffusion. However, it will
be pointed out that higher-order phase transitions play a
distinct role in connection with diffusional behavior.

II. GENERATING ANOMALOUS DIFFUSION
FROM ONE-DIMENSIONAL MAPS

A typical map which eventually leads to anomalous
diffusion can be obtained by suitably piecing together in-
termittent generating branches [16]

f(x)=(14¢e)x +ax? 0<x <1, (1)

where the parameter @ is chosen to be @=2%1—g/2).
For £€=0, a marginally stable fixed point arises. This
fixed point is responsible for the nonhyperbolicity of the
system and for the intermittent behavior. If the branches
are put together as shown in Fig. 1(a), a map is generated
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FIG. 1. (a) Intermittent map of Eq. (1), which is able to gen-
erate sublinear diffusion. Parameters: Z=3.0 and e=10"%. (b)
Superlinear map; same parameters as in (a).
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which will spend most of the time in the vicinity of its
fixed points on the diagonal. In this case, there will not
be much transport. For the map of Fig. 1(b) the situation
is entirely different: Here most orbits will lead from one
peak of the map to another, thus causing a great deal of
transport. Clearly, the extent to which the orbits are
concentrated and remain in the vicinity of the nonhyper-
bolic points is of great importance for the amount of
diffusion. However, the information about the concentra-
tion of orbits, which may be investigated with the help of
the reduced maps, is most sufficient to aid in understand-
ing anomalous diffusion. It cannot explain the fact that
anomalous diffusion does not appear simultaneously for
the two variants of maps when the intermittency ex-
ponent Z is increased. It is one aim of this contribution to
elucidate by which mechanism the diffusional anomality
is triggered. In our work, the maps displayed in Figs. 1
are used as motivating examples for a generic behavior of
intermittent maps; they are not the primary focus of our
study. The general diffusional properties of such systems
(they may easily be corroborated by numerical simula-
tions) can be summarized as follows: Depending on
whether the nonhyperbolic points are responsible for
transport or for the absence of transport, and depending
on the magnitude of the intermittency exponent Z, the
diffusion may be anomalous of superlinear or sublinear
types.

For the investigation of a system with the help of the
thermodynamic formalism, a suitable symbolic represen-
tation has to be introduced. This is done by restricting
the map via shift and modulo-operation to a unit box. In
this way, the so-called reduced map of a unit interval to
itself is obtained, as shown in Fig. 2 for the sublinear
variant [note that the end points of a unit box have been
identified with (0,1)]. For the investigation of generic
properties, the behavior around the fixed point of the re-
duced maps is relevant, and any reduced map with the
right fixed point behavior can be used. This means that
the reduced map of Fig. 2 can serve for the investigation
of both cases, if sufficient care is applied (to derive only
generic properties). For the reduced map, a complete ter-
nary symbolic description exists. Using the natural sym-
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FIG. 2. Reduced map of Eq. (1). In a piecewise linearized
approach, the width w; of the part of the x axis which leads to
symbol A4, (or C;), is equal to the dynamical weight of a block
of symbols {A4;,A4,_,,...,A4,} (or {C;,C,_y,...,C}) for
€—0. Same parameters as in Fig. 1.
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bols a to denote the left branch, b for the middle branch,
and c for the right branch, a typical orbit may be de-
scribed by symbol sequences such as a*b"c' where k, b,
and i are non-negative integers. However, for the prob-
lem of diffusion another symbolic description is more ad-
vantageous. For sublinear behavior we have to count the
number of times the element a (c) which indicates a trans-
port event is visited, as a function of the iteration number
n. In the superlinear case we want to count how many
iterations are needed to reach symbol a (¢). By using a
biinfinity of symbols to label the elements of the partition
as shown in Fig. 2, this procedure can be simplified. Any
sequence of iterations with 1 as the last symbol index can
be then be decomposed into a sequence of blocks
{A;,A;—y, ..., Ay} and {C;,C;,_|,...,C;}. In this
way, each block is linked to exactly one transport event
(in the positive or, respectively, negative direction of the
x axis) for the sublinear map. To achieve these events,
exactly i iterations are needed. For the superlinear case,
each block is related exactly with i —1 transport events
into the same direction. Note that each A4; is mapped
onto A;_; (i 22), and that the twofoldedness of the sym-
bols is a consequence of the two directions in which the
diffusion may proceed.

III. FROBENIUS-PERRON APPROACH

In what follows we apply a bivariate Frobenius-Perron
approach [8-12,23,24] for the characterization of
diffusion [25-27]. As a starting point we use the funda-
mental relation between the partition function based on
lengths scales and the associated free energy F(8):
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J
where A;(n) is the stability exponent of a symbolic chain
of length n which we label by j. The sum extends over all
allowed symbolic sequences of length n. Note that A;(n)
associates with each chain j of length n a ty})ical length

. —A.(n .

scale /; through the relation /;(n)=e Consider
now the grand-canonical partition sum

ZZ"e_Aj(n)B~1 . (3)

i
In view of Eq. (2), z(B)=e F® then follows. Formally,
we may associate a generalized Frobenius-Perron opera-
tor with our problem:

. L/ @)

fy)=x ’f (.V)I
This operator acts in the space of functions of bounded
variation. For the largest eigenvalue Br, of Lg, the rela-

Lp¥(x)=

tion ,uLB=eF’9 holds. In view of the chosen alphabet of
Sec. I1, we consider the grand-canonical transfer operator

< "W(y)
Gy, ¥(x)= Y (5)
. g(§=x |g'(.V)IB

where g (x)=f"(x). The condition that the largest eigen-
value ug, of Gg, fulfills p.GBz=1 can then be used to
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select for each B an appropriate z (), which is connected
with the largest eigenvalue of Lg by z(B)= l/,u,Lﬂ. More-

over, a unique relation between the associated eigenfunc-
tions of the two operators exists. For $<0.5 and
0<z =1, the grand-canonical transfer operator G, is of
trace class [28]. Due to its monotonicity properties in 3
and z, the operator is one-bounded and has therefore a
unique first eigenvector. The associated eigenvalue is
simple and well-separated from the rest of the spectrum.
Using the properties in 8 and z, the equation ”ng=l is
always solvable, which yields for given B the function
z(B). For B<1 and B> 1, this function is analytic. At
B=1, a nonanalyticity of F(B) appears, which is inter-
preted as a phase transition, the order of the phase transi-
tion depending on the intermittency exponent Z.

In order to include the diffusion in the present setting,
we use the bivariate partition

2e—Aj(n)B+u(I(fj"))q~ean(q,B) ’ ©)

j
where function p(I(f})) counts the number of visits of
the elements which are responsible for the transport to
neighboring cells. To understand this approach, note
that the ability of inducing k consecutive jumps can be
attached to the partition elements in a measurelike
fashion (in the same way as the probabilities are attached
to the partition elements in the usual multifractal ap-
proach). Again, the grand-canonical partition

S z%
J

—-A]«(n)B+p(I(fj"))q~1 o)

selects a B- and g-dependent z which is connected with
the diffusion-related free energy by z(B,q)=e_F"(q'm.
The previous case z () arises for g=0. The correspond-
ing grand-canonical Frobenius-Perron operator then ob-
tains the form

z"¥(y)
. Igr(y)|ﬂe—p(1(g(y)))q :

Gq’ﬂ,z“i’(x)': 2

gy)=

(8)

As there exist different solutions of Eq. (8), upon varia-
tion of B and g, crossing of the two largest eigenvalues z
can be observed. This yields a nonanalyticity which is in-
terpreted as a phase transition of the associated thermo-
dynamics. As in other cases [10,12] of phase-transition
behavior related to a bivariate thermodynamic formal-
ism, a critical line emerges in the ¢-8 plane. For the sub-
linear and superlinear cases, the critical lines have dis-
tinct properties which are investigated in the following
sections.

IV. GENERIC ASPECTS

In this section we focus on a model system and discuss
what will be called generic aspects of intermittent sys-
tems (nongeneric properties will be discussed in Sec. VI).
For our purpose, the behavior of the system is deter-
mined by the length scales e Ayt (this is standard in the
thermodynamic formalism). It is easy to see that for in-
termittent maps the widths of the partition elements 4,
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scale asymptotically as w;, ~k ~?/Z~1 (cf. Fig. 2). For
the numerical calculation of the bivariate free energy,
care must be taken in order to obtain the correct sum of
the intervals and their asymptotically correct relative
weights. Therefore, a partition of the generic form
w,=a k17" D—(k +1)"[1/G=D]]  yields the re-
quired properties. If above a partition element the
(curved) map is replaced by a straight line, these proper-
ties remain, and an exactly solvable model is obtained
(analogous to the Gaspard-Wang model, cf. Ref. [29]).
Then the role of w; is twofold: On the one hand we have
w, =e Af("), i.e., w; determines the dynamical weight
needed in the thermodynamic formalism [cf. Eq. (8)].
On the other hand, in the associated Markov-chain ap-
proach of the system, w, can be interpreted as the transi-
tion probability to land on element A4, after being rein-
jected by A4,. In the reduced map there is no escape,
therefore a is adjusted to the value a=0.5. From the ex-
pansion of the system into periodic orbits, it can be seen
that the non-fixed-point behavior of the system is deter-
mined by the partition function of the laminar orbits in
the following form:

1= 3 zMw(4,,...

k=1

LAy ))Beu(+»k)q

+ 3 zMw(Cy, ..., C )P R
k=1

- [}
= 3 zhwfer TR 3 Zhyfer e 9)
k=1 k=1

In this formula, u(—,k) [u(+,k)] are the diffusion-
related weights contributed to the ensemble by a block of
length k for the diffusion in the negative (positive) direc-
tion of the axis. For the sublinear behavior we have
u(—,k)=—1 for the motion to the left and u(+,k)=+1
for the motion to the right, according to the discussion in
Sec. II. Note that in Ref. [30] a {-function approach has
been used to derive an analogous relation. Based on the
same partition, for the superlinear diffusion we consider
the weights u(—,k)=—(k —1) and u(+,k)=+(k —1),
respectively. [If the present approach is compared with
the approach of Ref. [30], we can see that the same gener-
ic behavior emerges and that minimal differences are ob-
tained for nongeneric properties (e.g., when calculating
the diffusion coefficient [31]).] The solutions of Eq. (9)
are to be completed by the solutions generated from the
fixed points of the map. Of special interest is the margin-
al fixed point, which leads to no motion and to ballistic
motion, respectively. In principle, this behavior is in-
cluded in the laminar free energy in the limit kK — . For
numerical calculations, however, it must be taken into ac-
count explicitly. From Egs. (7)-(9), the diffusion-related
free energy can be calculated as a function of the parame-
ters g and B. The resulting free energy is then exposed to
competition with the free energies obtained from the
fixed points of the map. For both cases of anomalous
diffusion, the hyperbolic fixed points are of no influence,
due to the size of their stability exponents [In,y(1/w;)].
The concurrence between the solution provided by the
laminar free energy and the solution provided by the
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marginal fixed point are the origin of the phase transition
in the system.

V. DISCUSSION
OF THE BIVARIATE FREE ENERGY

We start the discussion by collecting a few facts which
will help us to understand the numerical results obtained
by using Eq. (9).

First, let us note that restricted to ¢g=0, the diffusion-
related free energy coincides with the usual free energy of
the system, whose properties are well known [28]. The
left-hand-side derivative of F,(g,B) taken with respect to
B at the point (¢ =0,8=1) yields the Lyapunov exponent
of the system, which for Z =2 is zero, because of the non-
normalizable measure, irrespective of whether sublinear
or superlinear diffusion is considered. For the free ener-
gy, in Ref. [29] the following expansion was chosen for

B<1:
F (g =0,8)~A(1—B)+0((1—B)/Z~ 1)
for 2<z<2 (10
and
Fi(g=0,8)~(1—B)7"" forz>2. (11)

The value for g=0 on the B=0 axis indicates the topolog-
ical entropy of the system. Second, let us note that the
diffusion coefficient may be obtained analytically from the
diffusion-related free energy from the relation

aZ
D=0.53;2—Fd(q,ﬁ)|q=0‘5:1 5 (12)

which is expected [26,27] to hold in general contexts
(remember that B=1 selects the natural measure). The
diffusion coefficient depends on the diffusion-related free
energy for ¢+0; it may therefore be qualitatively
different for the sublinear and superlinear cases. Of spe-
cial interest is the behavior of the free energy at the criti-
cal lines, which will help us to understand the diffusional
properties of the generic model of Sec. IV.

For the sublinear case, the properties of the operator
related to z(B) for g=0 also hold in the case of |g| > 0.
For ¢+0, the solution z(f3,q) is analytic as long as z< 1,
by the same line of arguments as indicated in Sec. III.
Note that these conclusions are valid in a rather general
setting [28]. The free energy increases with 8, decreases
with |gq|, and is symmetric in q. These facts are easily
deducible from Eq. (9). The behavior of the marginal
fixed point becomes important for 8= 1, where the corre-
sponding eigenvalue is larger than the eigenvalue from
the hyperbolic contribution. Therefore, the critical line
coincides with the B axis itself, for = 1. As can also be
concluded directly from Eq. (9), upon increasing |q|, the
order of the phase transition decreases. This is also indi-
cated by the calculated free energy F, [see Fig. 3(a)]. In
order to gain more insight into the nature of the phase
transition at B=1 (this point is important for the
diffusion behavior), we consider the spectrum of
Lyapunov exponents ¢(A) (see Figs. 4). For <2, the
Lyapunov exponent is nonzero, so that a first-order phase
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transition is obtained. A higher-order phase transition is
observed in the case Z>2. For sublinear behavior, the
dependence on g can be extracted from the sum in Eq.
(9). Expanding the dependence on g around g, and es-
timating the sum as an integral, one obtains
Ino(2)~ (g —gq)?/ 1M HAI/EZ=DI=B] For B=1,
F (q,B=1)~g*1"/Z=V] determines the dependence of

(@) -Fd(q, B)

Igi=5

(22)

q=0
Igk=1

iqi=2
lq=3

lqi=4

iql=5

(b)

Igl=10

FIG. 3. (a) Diffusion-related free energy for the sublinear
case, for (al) Z=1.6 and (a2) Z=2.2. The critical line coincides
with the B axis for 8> 1 (see text). (b) Free energy for the super-
linear case (z=2). The critical line is denoted by L. For the nu-
merical evaluation, maximal values of k between 80 and 120
were chosen.
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the order of the phase transition at =1 from z. From
the expansion around g, the order of the phase transition
at the critical line 8> 1 can also be obtained. In a second
step we investigate the information contained in the
second derivative of the diffusion-related free energy of
our generic model. The second left-hand-side derivative
of the numerically obtained free energy at =1 is plotted
in Fig. 5 for different intermittency exponents z. Upon
increasing Z, when the second derivative vanishes, we no
longer have normal diffusion. This occurs when the
diffusion-related free energy changes from first to second
order and then to a higher-order phase transition at the
point (1,0). To work out this point further, let us focus
on the diffusion coefficient of our model which can be cal-
culated using Egs. (9 and (12). The result
D~(3p- kw,)"! is easily obtained. Obviously, the
sum is finite for Z<2 (note also that the denominator can
be interpreted as the average escape time). Using the
properties of w; from this expression, the behavior

(rit)) ~t*, (13)

(a)

o(A)
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(b)
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FIG. 4. Dynamical spectrum ¢(A), for (a) Z=1.6 and (b)
z=2.2. For Z>2, only a slow convergence to the asymptotic re-
sult with a zero Lyapunov exponent is obtained, as a function of
the length n of the orbits considered (a method which can be ap-
plied for time series has been used for the evaluation). The dots
indicate the result for n=65.
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FIG. 5. Second derivative of the diffusion-related free energy
at B=1, for Z< 2 and Z> 2 (sublinear case).

can be recovered [where a=1 for Z<2 and a=1/(zZ—1)
for z>2].

The superlinear case is investigated in a similar
manner. From Eq. (9) it can be concluded immediately
that, for B> 1, the diffusion-related free energy does not
exist for nonzero ¢, and that phase transitions may show
up for B< 1. These properties are easily observed in Fig.
3(b), where a plot of the numerically obtained diffusion-
related free energy is shown. In the figure, the critical
line L separates the hyperbolic phase of the system (on
the left-hand side of L) from the nonhyperbolic phase of
the system (on the right-hand side of L). Whereas the hy-
perbolic phase is determined by the hyperbolic scaling
elements of the partition, the nonhyperbolic phase is
determined by the marginally stable fixed point.
Again the diffusion coefficient can be evaluated according
to Egs. 9) and (12). We obtain
D~(3p- k*w; ) /(3= kw,) which explains why, for
the superlinear case, anomality sets in at z=3. In order
to investigate the nature of the phase transition at B=1,
one must proceed towards this point within the hyperbol-
ic phase. As has been worked out in a similar context in
Ref. [30], one may use Wang’s results [29] for the mono-
variate (¢g=0) free energy to determine the order
of the phase transition. To this end, the free energy is ex-
panded for |gq|<<(1—B) as F,(q,)~F,(q=0,B)
+(1-B)g* /([ —(1—P)/*][g +(1—P)"/*]) for a<],
and as  F(q,8)~F,(g=0,8)+(1—B)¢*/([¢ —(1
—B)][g +(1—PB)]) for a>1, according to the behavior
of the free energy F;(q =0,8) in the two cases (the poles
are screened by the nonhyperbolic phase). By calculation
of derivatives, it is seen that for a<1 the diffusion
coefficient diverges in the limit B—1—. Higher-order
derivatives with respect to 8 may diverge in the case of
a>1.

VI. NONGENERIC PROPERTIES

In order to explain generic properties of intermittent
systems the use of the model system of Sec. IV was ad-
vantageous because we were able to use simple expres-
sions for our analytical and numerical investigations. For
experimental intermittent systems, deviations from this
generic model have to be expected. In these systems,
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often not much information is available about the hyper-
bolic branch, whereas the fixed-point behavior can easily
be measured. As far as generic properties are concerned,
this is no problem, since these properties are determined
by the fixed points of the reduced maps. Whereas the
generic properties remain (order of transitions, depen-
dence of the kind of diffusion on Z), properties which de-
pend strongly on the hyperbolic branch of the map are
not preserved. For such properties (e.g., the value of the
diffusion coefficient), care must be applied to use the
proper partition of the map. The generic partition will
not be sufficient.

VII. CONCLUSION

In this contribution, the relation between nonhyperbol-
icity, nonanalyticity, and anomalous diffusion has been
worked out. The bivariate thermodynamic formalism
proved to be a natural approach for the investigation of
these problems. Diffusion-related free energies were cal-
culated for the characterization of the sublinear and the
superlinear cases, respectively. As can be expected [12],
critical lines emerge in the free energies. The diffusional
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properties are determined by the behavior of the free en-
ergy in the neighborhood of the critical lines. Focusing
on the natural measure, a deeper insight into the connec-
tion between the system’s phase transition in the
Lyapunov spectrum and the anomalous diffusion proper-
ty is obtained. Apart from these generic properties of in-
termittent systems, the influence of deviations from the
generic model was discussed. It is hoped that the present
discussion may also help to understand the behavior of
experimental intermittent systems better.

Recently, R. Artuso, G. Casati, and R. Lombardi [32]
and especially X.-J. Wang and C.-K. Hu [30] arrived at
conclusions which are similar to ours. However, no de-
tailed numerical calculations seem to have been per-
formed.
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